Part Number Hot Search : 
P6SMB75 TB701 FCP20N60 KCC1694F C3500 2SA1744M C1213A AS01A
Product Description
Full Text Search
 

To Download IRFRU2607ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.kersemi.com 1 automotive mosfet pd - 95953 hexfet ? power mosfet v dss = 75v r ds(on) = 22m ? i d = 42a specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax features d-pak irfr2607z i-pak irfu2607z irfr2607zpbf irfu2607zpbf absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 1.38 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient  ??? 110 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 110 0.72 20 max. 45 32 180 42 96 96 see fig.12a, 12b, 15, 16  lead-free

 2 www.kersemi.com el ectr i ca l ch aracter i st i cs @ t j = 2 5 c ( un l ess ot h erw i se spec ifi e d) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 75 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.074 ??? v/c r ds(on) static drain-to-source on-resistance ??? 17.6 22 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 36 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 34 51 q gs gate-to-source charge ??? 8.9 ??? nc q gd gate-to-drain ("miller") charge ??? 14 ??? t d(on) turn-on delay time ??? 14 ??? t r rise time ??? 59 ??? t d(off) turn-off delay time ??? 39 ??? ns t f fall time ??? 28 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 1440 ??? c oss output capacitance ??? 190 ??? c rss reverse transfer capacitance ??? 110 ??? pf c oss output capacitance ??? 720 ??? c oss output capacitance ??? 130 ??? c oss eff. effective output capacitance ??? 230 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 45 (body diode) a i sm pulsed source current ??? ??? 180 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 30 45 ns q rr reverse recovery charge ??? 28 42 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 20v v gs = -20v v ds = 60v v ds = 25v, i d = 30a i d = 30a conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 60v, ? = 1.0mhz v gs = 0v, v ds = 0v to 60v  mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 30a, v gs = 0v  t j = 25c, i f = 30a, v dd = 38v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 30a  v ds = v gs , i d = 50a v ds = 75v, v gs = 0v v ds = 75v, v gs = 0v, t j = 125c v gs = 10v  v dd = 38v i d = 30a r g = 15 ?

 www.kersemi.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 20v 60s pulse width t j = 2 5 c t j = 175c 0 10203040 i d, drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 400 800 1200 1600 2000 2400 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1020304050 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v vds= 30v vds= 12v i d = 30a for test circuit see figure 13 0.0 0.4 0.8 1.2 1.6 2.0 2.4 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc

 www.kersemi.com 5 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature ri (c/w) i (sec) 0.71826 0.000423 0.66173 0.004503 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v

 6 www.kersemi.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 3.5a 4.8a bottom 30a 1k vcc dut 0 l -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a id = 50a

 www.kersemi.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ' t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ' tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 30a

 8 www.kersemi.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.kersemi.com 9  

  

  12 in the assembly line "a" as s e mb le d on ww 16, 1999 example: with assembly t his is an irfr120 lot code 1234 year 9 = 1999 dat e code week 16 part number logo int ernational rect ifier assembly lot code 916a irfu120 34 year 9 = 1999 dat e code or p = designat es lead-free product (optional) note: "p" in assembly line position i ndicates "l ead-f r ee" 12 34 week 16 a = assembly site code part number irfu120 line a logo lot code assembly int ernational rect ifier

 10 www.kersemi.com  
    
  assembly example: wit h as s e mb l y t his is an irfu120 year 9 = 1999 dat e code line a week 19 in the assembly line "a" as s e mb l e d on ww 19, 1999 lot code 5678 part number 56 irf u 120 int e rnat ional logo rectifier lot code 919a 78 note: "p" in as s embly line pos ition indi cates "l ead-f ree"  56 78 as s e mb l y lot code rectifier logo international irf u120 part number week 19 dat e code year 9 = 1999 a = assembly site code p = designates lead-free product (optional)

 www.kersemi.com 11   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.21mh r g = 25 ? , i as = 30a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994      )  !"#$   

     
      
 tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFRU2607ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X